

TIRS-The Thermal Infrared Sensor on the Landsat Data Continuity Mission

Landsat Science Team Meeting 02/13/2013

Dennis Reuter: TIRS Instrument Scientist

301-286-2042

dennis.c.reuter@nasa.gov

Real Credit Goes to the TIRS Instrument Team

TIRS High-level Overview

- TIRS is a two channel thermal imager providing data continuity for the Landsat thermal band.
 - Pushbroom imager developed by NASA/Goddard Space Flight Center
 - TIRS operates in concert with, but independently of, OLI.
- >TIRS will produce radiometrically calibrated, geo-located thermal image data
 - TIRS will deliver algorithms and parameters necessary to evaluate data and produce required outputs
 - Final scene data generated as part of the Data Processing and Archive Segment at the United States Geological Survey/ Earth Resources Observation and Science (EROS) facility in Sioux Falls, South Dakota.
 - USGS responsible for operational algorithms
 - OLI and TIRS data will be merged into a single data stream.
- >TIRS was delivered in February 2012.
 - The TIRS delivery schedule was a significant driver of the overall TIRS development.

TIRS Instrument Overview

- ≥2 channel (10.6-11.2 um and 11.5-12.5 um) thermal imaging instrument
- Quantum Well Infrared Photodetector (QWIP) detector/FPA
- ><120 m Ground Sample Distance (100 m nominal)
- ≥185 km ground swath (15° field of view)
- Operating cadence: 70 frames per second
- Precision scene select mirror to select between nadir view, onboard variable temperature blackbody and space view
- ➤ Passively cooled telescope assembly operating at 185K (nominal)
- ➤ Actively cooled (crycooler) FPA operating at ≤43K
- ➤ Thermal stability key to radiometric stability (NEAT < 0.4 K @ 300 K)

TIRS Operational and Data Sequence

- ➤ Point SSM to onboard blackbody calibrator (OBC) take 1 minute of data
 - Provides measure of instrument performance for known target
- ➤ Point SSM to deep space view take 1 minute of data
 - Provides measure of instrument background
- ➤ Point SSM nadir toward Earth take up to 77 WRS2 images
- Subtract background
- >2 rows of data taken in each channel and in dark area
 - Combined into a single effective row on the ground
 - Generally, all pixels in each row are good.
 - > Dark only used if detector temperature is not stable
- >Several additional calibration modes
 - Integration time sweeps
 - OBC temperature change
 - Lunar views
 - Side slither (scan 90° relative to normal direction)

TIRS Focal Plane Layout (3 QWIPs)

Radiance Detected by TIRS from Surface and Atmosphere

$$L_{s} = \frac{\int (B(T,\lambda) \cdot \tau(\lambda) + L_{atm}(\lambda)) \cdot R'(\lambda) \cdot d\lambda}{\int R'(\lambda) \cdot d\lambda}$$

 $B(T,\lambda)$ • Emitted and reflected surface radiance

 $\tau(\lambda)$ • Transmission of atmosphere

 $L_{atm}(\lambda)$ • Emitted and scattered radiance of atmosphere

 $R'(\lambda)$ • Spectral response of detector

 $L_{\rm a}$ • Detector integrated radiance

TIRS Assembly Overview

TIRS Instrument FOVs

Thermal Design Provides Required Stability

Thermal Zones:

Warm End

-Scene Select Mechanism

-Scene Select Mirror & Baffles (≤293K)

-Stability $\pm 1K$ (35 sec)

-Stability $\pm 2K$ (44Min)

-Blackbody Calibrator (270 to 320K)

-Stability ± 0.1 K (35 sec)

Cold End

-Tel Stage: Tel Assembly (185K)

-Stability ± 0.1 K (35 sec)

-Stability ± 0.25 K (44Min)

-Warm Stage: FPA Shroud (<88K)

-Cold Stage: FPA (<43K)

-Stability ± 0.01 K (35 sec)

-Stability $\pm 0.02K$ (44 min)

HERE'S TIRS

Leaving Goddard Space Flight Center

Earth View

On the Spacecraft, Showing Views

TIRS: GREATER THAN THE SUM OF ITS IMPRESSIVE PARTS

QWIP Focal Plane: Makes 2-channel Images

Cryocooler: Cools Focal Plane to -385° F

Scene Select Mechanism: Points View to 0.0006°

Main Electronics and Cryocooler **Electronics: Control operations and Save**

Telescope: Focuses IR Light

Focal Plane Electronics: Reads Images

Pre-launch Performance Verification

- Most performance metrics meet or exceed requirements
 - Spatial shape parameters slightly out of range
 - Minor exceedence in two spectral characteristics
 - ➤ DIRSIG simulations indicate non-uniformity effect < 0.1%
 - Pointing knowledge is slightly out of range
 - >36 μrad instead of 27 μrad
- ➤ None of the above exceedences will have a science impact
 - LDCM cal/val team has concurred on waivers or CCRs where appropriate
- ➤NIST radiometric traceability calibration of flood source indicates excellent agreement (~0.3%) with a 0.992 emissivity blackbody
 - After full implementation of cal routine, expect overall calibration accuracy better than 1%
 - On-orbit vicarious Earth calibration will also provide verification

Slight Residual Scattering Risk

- TVAC2 measurements show 5% scattering effect in some areas which exceeds allowance
 - Measurement and models indicate this is almost certainly caused by back reflectance into the cal GSE
 - Exacerbated by necessity of operating SSM at off-nadir angles to reach beyond edge of focal plane
 - Not done in flight
 - Nadir SSM measurements show < 0.4% scattering
 - In the highly unlikely event that in-flight performance shows scattering is in TIRS, data in hand is sufficient to develop numerical correction algorithms

Pre-launch Performance Reports

- ➤TIRS-IS-RPT-0089 Calibration Report
- ➤TIRS-IS-RPT-0090 Spectral Report
- ➤TIRS-IS-RPT-0091 Radiometry Report
- ➤TIRS-IS-RPT-0092 Spatial Report
- ➤TIRS-IS-RPT-0093 Scatter Report
- ➤TIRS-IS-RPT-0094 Bright target recovery Report
- ➤TIRS-IS-RPT-0095 Radiometric Calibration Report
- >TIRS-IS-RPT-0096 Radiometric Precision Report
- ➤TIRS-IS-RPT-0097 Noise Report
- ➤TIRS-IS-RPT-0098 Pointing Report
- >TIRS-IS-RPT-0099 Onboard Blackbody Report
- Final Access to these may be limited by ITAR etc.
 - Method to make necessary information available in process

240 K Noise Performance Exceeds Requirements

Procedure:

- 10 frames of Flood source @ 240K
- Linearize 10 Flood frames
- Subtract linearized background (deep space collect)
- Convert each of the 10 frames to radiance
- Calculate standard deviation of the 10 frames per pixel
- Take NEdL as the st. dev. over the science row

Result:

10.8um: NEdL = 0.005619 W/m2/sr/um (req. is 0.059 W/m2/sr/um) – NEdT approx. 0.039K (Req. 0.80K) 12.0 um: NEdL = 0.005325 W/m2/sr/um (req. is 0.049 W/m2/sr/um) – NEdT approx. 0.044K (Req. 0.71K)

LANDSAT Data Continuity Mission

NASA GSFC / USGS EROS

360 K Noise Performance Exceeds Requirements

Procedure:

- 10 frames of Flood source @ 360K
- Linearize 10 Flood frames
- Subtract linearized background (deep space collect)
- Convert each of the 10 frames to radiance
- Calculate standard deviation of the 10 frames per pixel
- Take NEdL as the st. dev. over the science row

Result:

10.8um: NEdL = 0.008096 W/m2/sr/um (req. is 0.059 W/m2/sr/um) – NEdT approx. 0.057 K (Req. 0.27K) 12.0 um: NEdL = 0.007226 W/m2/sr/um (req. is 0.049 W/m2/sr/um) – NEdT approx. 0.060 K (Req. 0.29K)

Summary of spatial shapes for various assumptions:10.8 µm

- Perfect 16-pix circle (black)
- Modeled Edge derived from PSF determined from WFE (green)
- Measured Edge (blue)
- Modeled Edge based on composite PSF for measured (red)
- Edge that exceeds requirements (cyan)
- Modeled Edge based on composite PSF for required (magenta)

	RER [/m]	Edge Extent [m]
Wavefront derived PSF:	0.0100	111.15
Measure derived PSF:	0.0058	187.95
Required derived PSF:	0.0084	131.26
Requirement:	> 0.007	< 150

Spatial shape exceedences will not significantly impact science

- As seen from previous charts measured shape is not significantly different than required
- Measured shape does not take possible GSE effects into account and is a worst case
 - Lunar observations will be used to verify shapes
- ➤DIRSIG simulations using derived PSFs show that only a few percent difference in radiance is expected between measured edge response and required edge response
 - True even for unphysical case of 60 K change in temperature in a single pixel
 - Effect much less that 1% for typical thermal gradients

Performance Summary

- >TIRS performance remained constant through environmental testing
- Most performance parameters meet or exceed requirements
- > Exceedences do not affect science performance
 - Expect some of the exceedences are in part due to cal GSE
- Appropriate waivers and CCRs have been agreed to in principle by cal/val team and Project Scientist
 - Formal process is ongoing
- ➤ If necessary, analytical corrections are possible using characterization data in hand.
- Fully expect TIRS data to knock your socks off.

IT TAKES A GREAT TEAM

WITH
INDUSTRIAL
PARTNERS
ACROSS
THE NATION